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Abstraci The quantum and classical transitions of the N&l vector in antiferromagnets are 
considered. !%pressions for the tunnelling and thermal activation rata of the Vansitions are 
given for low temperatures, near the cross-over tempemre and for high temperahlres. so that 
they could be cheeked experimentally. Quantum and thermally activated nucleations in bulk 
solids and two-dimensional films of antifemmagnet are also presented. 

1. Introduction 

Interest in macroscopic quantum tunnelling (MQT) in magnetic systems has been increasing 
in the last few years [1-12]. The idea follows along the lines suggested by Caldeira and 
Leggelt [I31 for MQT in general [14] which has been considered extensively in systems of 
Josephson junctions [ 15-17], and superconducting quantum interference devices (SQUIDS) 
[18]. Quantum tunnelling of magnetization in ferromagnets was considered theoretically 
by Chudnovsky and Gunther [4], Garg and Kim [6] and Simanjuntak [91. Experimental 
observations on quantum tunnelling of magnetization have also been reported by several 
groups [10-12]. More recent systems that have been considered are antiferromagnets where 
the formulation for quantum tunnelling of the Nkel vector was performed independently by 
Krive and Zaslavskii [7] and Barbara and Chudnovsky [SI. In [SI the exponent of the rate 
of quantum coherence of the N6el vector was calculated with the pre-factor left incomplete. 
In [7] the exponent of the nucleation rate of the Nkel vector was calculated using the 
thin-wall approximation. Since the thin-wall approximation is only good for the anisotropy 
ratio E + 1 (see below) which corresponds to very small rates, the results are in general 
difficult to demonstrate in experiments. The purpose of the present paper is to extend the 
calculation of the rates of the Nkel vector transitions for a more general anisotropy ratio 
E z 1 so that the results would be applicable to low, moderate and high rates to make them 
more accessible for experimental checks. We also present results for quantum and thermal 
nucleations. 

We start with the Euclidean action for a system of antiferromagnet (neglecting 
dissipation) which is given by [7] 

(1) 
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with the boundary conditions &(-fphR) = .5c(fphC2) and de,(t)/dt = 0 at t = +iphR.  
The eigenvalues I: and A, in equation (6) satisfy the eigenvalue equations 

and 

(-$ +cos(zec)+2E(1 -4cos2eC)sin2e, $,,(t) = I .h( t ) .  ) (10) 

Finally, the prime on the product in equation (6) means that the zero eigenvalue If = 0 is 
omitted. 

We find that the solution of equation (8) is given by 

e&) = tan-'[tanQI d n ( t w t a n B l ) ]  (11) 

where dn(u) is the delta amplitude elliptic function [25] and 0, = -0, > 6, = -8, are the 
roots of sinZ(? - 6s in4B = E .  The integration constant E satisfies the periodicity condition 
of e&), i.e. 

where K ( q )  is the complete elliptic integral of the first kind [Z] and q = (tan'6'1 - 

Having found the solution in equation (1 1) we now find the temperature dependence of 
the tunnelling rate. For tunnelling at low temperatures, we find that the solution leads to 
the exponent B in equation (6) as 

tan2 tan e,. 

which is valid for exp(-hQ/tZ') << & ( E  - 1). 
It is difficult to calculate the product of eigenvalues in equation (6) for general E and T .  

However, for large E and at T = 0 K we can use the small4 approximation to equations (5) 
and (8) so that the solution becomes &(t) = (secht)/,h and the product of the eigenvalues 
can be found by the standard method of Langer [ 191 to give the product as 2&. Using 
this approximation, the tunnelling rate in equation (6) becomes 

For the thermal activation rate at high temperatures T >> TO, where is the cross-over 
temperature between tunnelling and thermal activation (see below), the path integral method 
gives the thermal activation rate as [26] 
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where UB is the barrier height of the potential V U ( @ )  which is 

A: and A., respectively are now given by 114,231 

A:= (Ty+sa’ 2nnkT 

and 

The cross-over temperature TO between tunnelling and thermal activation is given by [ 14,271 
AI = 0, so that 

Using equations (17) and (18). the product of eigenvalues in equation (15) can be found so 
that the thermal activation rate at T >> TO is 

exp ($) . kT0 s i n h ( n T o / T m )  r = -  
A sin(nTo/T) 

We now consider the thermal activation rate at T close to but slightly greater than To. 
In this temperature regime the rate becomes [21, U ]  

where 

and the factor a is given by 

The factor f is the product of eigenvalues as in equation (15) but with n that now starts 
from n = 2 so that 
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Another case that we consider is tunnelling at temperatures close to but lower than TO. 
S[e,(t)] of the For the solution & ( t )  in equation (ll),  we can show that the exponent E 

tunnelling rate in equation (6) is approximately given by 

- 1 
(1 - (2/3~)(2 - I/E)(To/T) 1 - (2/3~)(2 - ] / E )  

where 

The pre-factor, on the other hand, can be approximated by the pre-factor in equation (21) 
so that the tunnelling rate in the regime of temperature being considered becomes 

This result agrees with equation (21) at T = TO. Better still, we replace B / h  by UB/kT in 
equation (27). 

3. The nucleation 

Let us now move on to the nucleation problem in antiferromagnets. In this case, the action 
is given by equation (I)  in general but, as before, we shall consider the case of nucleations at 
constant 6.  The exponent of the nucleation rate was calculated by Krive and Zaslavsku [7] 
for 6 --f 1 with the thin-wall approximation. Their result, therefore, is limited to very low 
rates where the unstable state appears almost as stable and thus is very difficult to observe 
experimentally. In the following, we shall extend the calculation for the more general case 
E > 1 so that it is applicable to low, moderate and high rates. 

As before, we also use t 2 fir and define the dimensionless variable y s x m  so 
that the action that we are considering takes the form 

In the following, we shall consider only nucleations at T = 0 K for antiferromagnet 
systems with dimensions much greater than m. In this case, the classical solution 
&(y, t )  that minimizes the action is a spherical [28] bubble &(U) with the variable 

U = ( t 2  + r: + r: + Y:)'/2 (294 
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Figure 1. The solution &(U) for quantum nucleations in a two-dimensional antiferromagnetic 
film with E = 2.0. 

Table 1. The reduced exponents for various E.  h?@) is the reduced exponent for the rates of 
quantum nucleations in bulk solids. bP(&) is the reduced expand for the rates of quantum 
nucleations in two-dimensional films. b:(c) is the reduced exponent for lhe nres of thermal 
nucleations in bulk solids. b:(c) is the reduced exponent for the rats of thermal nucleations in 
two-dimensional films. 

E b?(c) @ ( E )  = b r ( ~ )  h:(&) 

1.5 114.00 9.11 1.35 
1.6 73.73 6.82 1.16 
1.7 
1.8 
1.9 
2.0 
2. I 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 

51.47 5.37 1 .M 
37.97 4.39 0.91 
29.20 3.68 0.82 
23.18 3.15 0.75 
18.88 2.75 0.69 
15.70 2.43 0.64 
13.28 2.17 0.60 
11.40 1.95 0.56 
9.91 1.77 0.53 
8.70 1.62 0.50 
7.72 1.50 0.47 
6.90 1.38 0.45 
6.21 1.29 0.43 
5.62 1.20 0.41 
5.12 1.13 0.39 
4.69 1.06 0.38 
4.32 1.00 0.36 
3.99 0.95 0.35 
3.70 0.90 0.34 
3.44 0.85 0.32 
3.21 0.81 0.31 
3.01 0.78 0.30 
2.82 0.74 0.29 
2.66 0.71 0.28 

where the reduced exponent b$@) is also given in table 1 for various E .  There still remains 
the product of eigenvalues in equation (33) that we have not solved. 
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We now consider thermal nucleations at T much greater than the cross-over temperature 
To between quantum and thermal nucleations (see below). The action in equation (28) 
becomes 

S[B(y)]= -(-) XL 01 312 ~ h b l Z ~ d 3 y [ ~ ( V ~ B ) 2 + ~ ( s i n 2 B - ~ s i n 4 B ) ]  (36) 
Y Z  K 

and a bubble B(y) has to reach a critical size before it can evolve. This critical size is 
determined by SS[B,(y)l = 0. Since we are considering dimensions much greater than m, the critical bubble has the equation of motion as in equation (31) but with N that is 
now replaced by N - 1, and U is like equation (29a) or (29b) but now without the variable 
f. For the temperature regime being considered (i.e. T >> TO), the path integral method 
leads to the thermal nucleation rate per unit volume (or area) for three (or two) dimensions 

P-91 

(37) 

Here we now have 

where k," and k, satisfy the eigenvalue equations 

(-V; + l)Q:(Y) = k,Q:(y) (39a) 

[-v~+cos(zB,) +%(I  -4cos2$)sinz~,]Q,(y) =&e&). (39b) 

and 

As before, the prime on the product in equation (37) means that the zero eigenvalues of 
equation (38b) are omitted. 

We have also calculated the exponent B in equation (37) numerically for two and three 
dimensions. For this purpose, we have written B for a three-dimensional bulk solid as 

where the reduced exponent b:(&) is shown in table 1 for various E .  Similarly, for a 
two-dimensional film, 

where the reduced exponent b;(&) is also shown in table 1 for various E .  Of course we 
need to find the cross-over temperature To between quantum and thermal nucleations for the 
rate in equation (37). This temperature is determined by ht.0 = 0 where ko is the ground- 
state (negative) eigenvalue of equation (39b). We have solved numerically the ground-state 
eigenvalue for various E so that it leads to the cross-over temperature TO shown in table 2. 
There remains the products of eigenvalues in equation (37) that we have not solved. 
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Table 2 The reduced cms-over temperahlre for various E .  The second column is for a three- 
dimensional bulk solid and the ulird column is for a two-dimensional antiferromagnetic film. 

2n kTolhoo 

E 30 bulk ZD film 

1.5 0.09 0.19 
1.6 0.12 0.26 
1.7 0.15 0.34 
1.8 0.19 0.43 
1.9 0.23 0.52 
2.0 0.27 0.61 
2.1 0.31 0.71 
2.2 0.36 0.80 
2.3 0.40 0.90 
2.4 0.45 0.99 
2.5 0.50 1.08 
2.6 0.55 1.18 
2.7 0.60 1.26 
2.8 0.65 1.35 
2.9 0.70 1 .I4 
3.0 0.76 I .52 
3.1 0.81 1.60 
3.2 0.87 1.68 
3.3 0.92 1.75 
3.4 0.98 1.83 
3.5 1.03 I .90 
3.6 1.09 1.97 
3.7 1.15 2.03 
3.8 1.21 2.10 
3.9 1.26 2.16 
4.0 1.32 2.22 

4. Summary and discussion 

We have presented the tunnelling and thermal activation rates of transitions of the Ntel 
vector in antiferromagnets for various temperature regimes. The results for quantum and 
thermal nucleations in bulk solids and two-dimensional antiferromagnetic films are also 
given. As an illustration, for antiferromagnets with a homogeneous Ntel vector with an 
anisotropy constant K = lo6 erg CII-~, a susceptibility xl. = and a particle radius 
R = 30 A the rate of quantum transitions of the N6el vector would be 0.1 s-] for E = 1.5. 
The cross-over temperature To between tunnelling and thermal activation in this case would 
be 2.4 K. For E = 2.5 the rate would be 1.8 x lo5 s-I and the corresponding cross-over 
temperature would be 2.7 K. A larger particle size would require a higher E for the rates to 
be appreciable. For example, with R = 40 A and E = 3 the rate would be 1.3 x IO-’ s-’ 
and To = 2.8 K. For quantum and thermal nucleations, on the other hand, the cross-over 
temperature for a bulk solid with the given K and XL as above would be 0.2 K for E = 1.5 
and 1.1 K for E = 2.5. The cross-over temperature in a two-dimensional antiferromagnetic 
film would be 0.4 K for E = 1.5 and 2.3 K for E = 2.5. It would be interesting now to see 
how our results can be manifested in experiments. 
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